16 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Swarm Robotics

    Get PDF
    This study analyzes and designs the Swarm intelligence (SI) that Self-organizing migrating algorithm (SOMA) represents to solve industrial practice as well as academic optimization problems, and applies them to swarm robotics. Specifically, the characteristics of SOMA are clarified, shaping the basis for the analysis of SOMA's strengths and weaknesses for the release of SOMA T3A, SOMA Pareto, and iSOMA, with outstanding performance, confirmed by well-known test suites from IEEE CEC 2013, 2015, 2017, and 2019. Besides, the dynamic path planning problem for swarm robotics is handled by the proposed algorithms considered as a prime instance. The computational and simulation results on Matlab have proven the performance of the novel algorithms as well as the correctness of the obstacle avoidance method for mobile robots and drones. Furthermore, two out of the three proposed versions achieved the tie for 3rd (the same ranking with HyDE-DF) and 5th place in the 100-Digit Challenge at CEC 2019, GECCO 2019, and SEMCCO 2019 competition, something that any other version of SOMA has yet to do. They show promising possibilities that SOMA and SI algorithms offer.Tato práce se zabývá analýzou a vylepšením hejnové inteligence, kterou představuje samoorganizující se migrační algoritmus s možností využití v průmyslové praxi a se zaměřením na hejnovou robotiku. Je analyzován algoritmus SOMA, identifikovány silné a slabé stránky a navrženy nové verze SOMA jako SOMA T3A, SOMA Pareto, iSOMA s vynikajícím výkonem, potvrzeným známými testovacími sadami IEEE CEC 2013, 2015, 2017 a 2019. Tyto verze jsou pak aplikovány na problém s dynamickým plánováním dráhy pro hejnovou robotiku. Výsledky výpočtů a simulace v Matlabu prokázaly výkonnost nových algoritmů a správnost metody umožňující vyhýbání se překážkám u mobilních robotů a dronů. Kromě toho dvě ze tří navržených verzí dosáhly na 3. a 5. místo v soutěži 100-Digit Challenge na CEC 2019, GECCO 2019 a SEMCCO 2019, což je potvrzení navržených inovací. Práce tak demonstruje nejen vylepšení SOMA, ale i slibné možnosti hejnové inteligence.460 - Katedra informatikyvyhově

    Forecasting and stabilizing chaotic regimes in two macroeconomic models via artificial intelligence technologies and control methods

    Full text link
    One of the key tasks in the economy is forecasting the economic agents' expectations of the future values of economic variables using mathematical models. The behavior of mathematical models can be irregular, including chaotic, which reduces their predictive power. In this paper, we study the regimes of behavior of two economic models and identify irregular dynamics in them. Using these models as an example, we demonstrate the effectiveness of evolutionary algorithms and the continuous deep Q-learning method in combination with Pyragas control method for deriving a control action that stabilizes unstable periodic trajectories and suppresses chaotic dynamics. We compare qualitative and quantitative characteristics of the model's dynamics before and after applying control and verify the obtained results by numerical simulation. Proposed approach can improve the reliability of forecasting and tuning of the economic mechanism to achieve maximum decision-making efficiency.Comment: 12 pages, 4 figure

    X-ware: a proof of concept malware utilizing artificial intelligence

    Get PDF
    Recent years have witnessed a dramatic growth in utilizing computational intelligence techniques for various domains. Coherently, malicious actors are expected to utilize these techniques against current security solutions. Despite the importance of these new potential threats, there remains a paucity of evidence on leveraging these research literature techniques. This article investigates the possibility of combining artificial neural networks and swarm intelligence to generate a new type of malware. We successfully created a proof of concept malware named X-ware, which we tested against the Windows-based systems. Developing this proof of concept may allow us to identify this potential threat’s characteristics for developing mitigation methods in the future. Furthermore, a method for recording the virus’s behavior and propagation throughout a file system is presented. The proposed virus prototype acts as a swarm system with a neural network-integrated for operations. The virus’s behavioral data is recorded and shown under a complex network format to describe the behavior and communication of the swarm. This paper has demonstrated that malware strengthened with computational intelligence is a credible threat. We envisage that our study can be utilized to assist current and future security researchers to help in implementing more effective countermeasure

    The relationship between satisfaction, trust and repurchase intention: examining the moderating role of word of mouth

    Get PDF
    Underlying by Cognitive Dissonance Theory, this study aims to examine the moderating effect of word of mouth (WOM) on the relationship between consumers’ satisfaction and trust. The research also emphasizes on figuring out the differences in moderating effects of WOM between online and conventional shopping context. In addition, the impact of trust on repurchase intention is also investigated. Applying Structural Equation Modeling, data collected from 296 online consumers and 169 conventional shoppers have been analyzed to figure out the associations among these concepts in both shopping context. The results indicate that word of mouth significantly plays a moderating role in the relationship between satisfaction and trust. In addition, it is obviously evidenced that the moderating effect of WOM varies due to different shopping contexts and the interactions of satisfaction, trust and repurchase intention are also different. The findings provide a better understanding regarding consumer behavior in different shopping environments. Consequently, practical implications for marketers and theoretical implications for scholars are discussed

    X-Swarm: The Upcoming Swarm Worm

    Get PDF
    With the rapid growth of technology in the digital landscape, cybercriminals attempt to utilize new and sophisticated techniques to autonomous and increase the speed and scale of their attacks. Meanwhile, the Dark Web infrastructures such as Tor, plays a crucial role in the criminal underground, especially for malware developers' communities. It is logical to expect that the malicious actors would utilize the combination of these techniques in shortcoming time. To better understand the upcoming threat, in this manuscript, we investigate the design and mitigation of such malware. Accordingly, we introduce X-sWarm, which will be the next generation of resilient, stealthy malware that leverages the intelligent technique and the darknet infrastructures. Furthermore, we show that with the self-healing network mechanism, X-sWarm can achieve a low diameter and a low degree and be robust to partitioning under node removal. More importantly, we suggest the mitigation technique that neutralizes the nodes of the proposed worm

    Self-Organizing Migrating Algorithm Pareto

    Get PDF
    In this paper, we propose a new method named Pareto-based self-organizing migrating algorithm (SOMA Pareto), in which the algorithm is divided into the Organization, Migration, and Update processes. The important key in the Organization process is the application of the Pareto Principle to select the Migrant and the Leader, increasing the performance of the algorithm. The adaptive PRT, Step, and PRTVector parameters are applied to enhance the ability to search for promising subspaces and then to focus on exploiting that subspaces. Based on the testing results on the well-known benchmark suites such as CEC'13, CEC'15, and CEC'17, the superior performance of the proposed algorithm compared to the SOMA family and the state-of-the-art algorithms such as variant DE and PSO are confirmed. These results demonstrate that SOMA Pareto is an effective, promising algorithm

    Design and Experimental Validation of a 3-DOF Force Feedback System Featuring Spherical Manipulator and Magnetorheological Actuators

    No full text
    This research focuses on the development of a new 3-DOF (Degree of Freedom) force feedback system featuring a spherical arm mechanism and three magnetorheological (MR) brakes, namely two rotary MR brakes and one linear MR brake. The first rotary MR brake is integrated in the waist joint to reflect the horizontal tangent force, the other rotary MR brake is integrated in the shoulder joint to reflect the elevation tangent force, while the linear MR brake is integrated in the sliding joint of the arm to reflect the radial force (approach force). The proposed configuration can reflect a desired force to the operator at the end-effectors of the arm independently in 3 DOFs by controlling the current applied to the coils of the MR brakes. After the introduction, the configuration of the proposed force feedback system is presented. Afterward, the design and conducted simulation of the MR brakes for the systems are provided. The prototype of the force feedback system, which was manufactured for the experiment, is then presented as well as some of the obtained experimental results. Finally, the proposed control system is presented and its implementation to provide a desired feedback force to the operator is provided

    Self-Organizing Migrating Algorithm with narrowing search space strategy for robot path planning

    Get PDF
    This article introduces a version of the Self-Organizing Migrating Algorithm with a narrowing search space strategy named iSOMA. Compared to the previous two versions, SOMA T3A and Pareto that ranked 3rd and 5th respectively in the IEEE CEC (Congress on Evolutionary Computation) 2019 competition, the iSOMA is equipped with more advanced features with notable improvements including applying jumps in the order, immediate update, narrowing the search space instead of searching on the intersecting edges of hyperplanes, and the partial replacement of individuals in the population when the global best improved no further. Moreover, the proposed algorithm is organized into processes named initialization, self-organizing, migrating, and replacement. We tested the performance of this new version by using three benchmark test suites of IEEE CEC 2013, 2015, and 2017, which, together contain a total of 73 functions. Not only is it superior in performance to other SOMAs, but iSOMA also yields promising results against the representatives of well-known algorithmic families such as Differential Evolution and Particle Swarm Optimization. Moreover, we demonstrate the application of iSOMA for path planning of a drone, while avoiding static obstacles and catching the target.Web of Science116art. no. 10827
    corecore